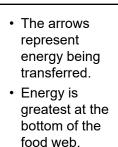


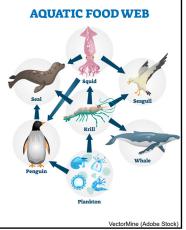
Ecosystem

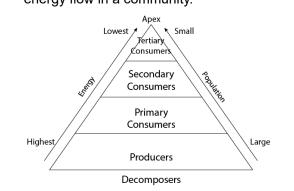
 All the organisms in an area that interact with each other and with their environment of energy and matter.

Ecosystem - Scott McCracken (CC BY-NC-ND 2.0)

- The energy passes through the ecosystem from species to species.
 - · Herbivores eat plants
 - Carnivores eat herbivores
- A food chain shows a single pathway for the passing of energy.
 - The arrows represent energy being transferred.




 A food web is a network of food chains by which energy and nutrients are passed on from one living organism to another.



vecton (Adobe Stock

• An energy pyramid is a graphical model of energy flow in a community.

• All organisms in an ecosystem have a specific role or trophic level.

Producers (Autotrophs)

make their own food

plants

Consumers (Heterotrophs)

get energy

from eating other organisms

Decomposers

recycle dead organisms into chemical nutrients used in soil, air, and

Credit: Plant – Julia Zolotova; Tree – Michael (Pexels); Rabbit – Denniz Futalan; Fox – Funny Foxy Pride (Pexels); Mushrooms – Ashish Raj (Pexels); Earthworm – Eukalyptus (Pixabay)

• Consumers (heterotrophs) are categorized according to what they eat.

Herbivores

- eat only plants
- Primary consumers are all herbivores.

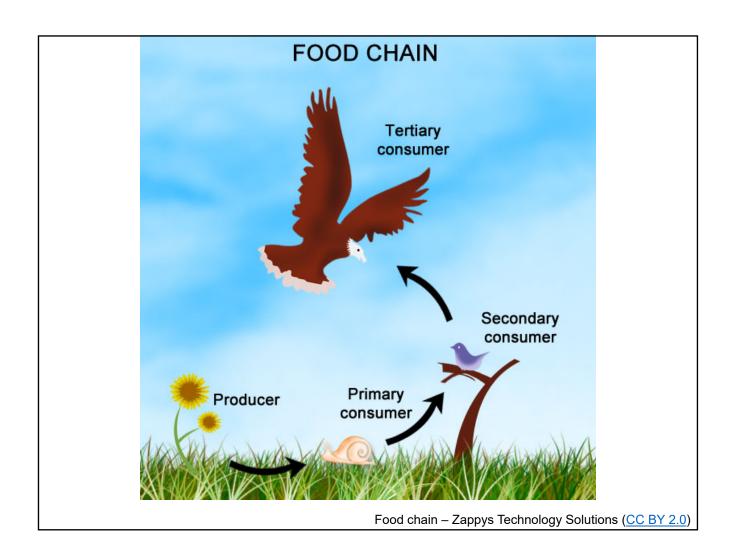
Zebra – Pixabay (Pexels) Hyena – Frans Van Heerden (Pexels)

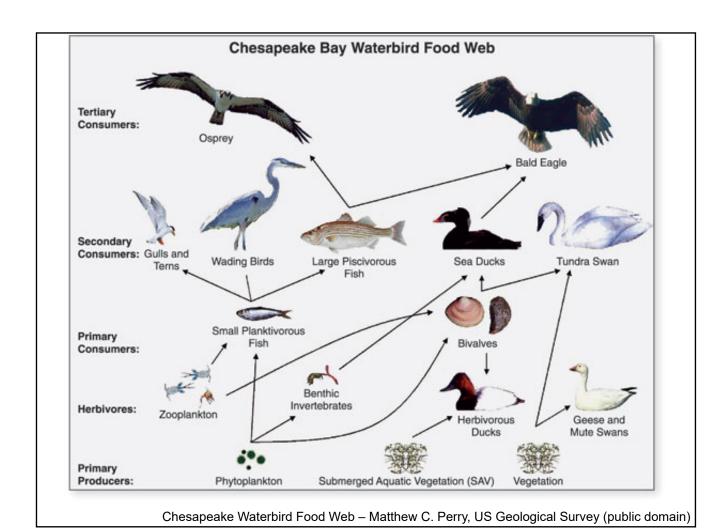
Carnivores

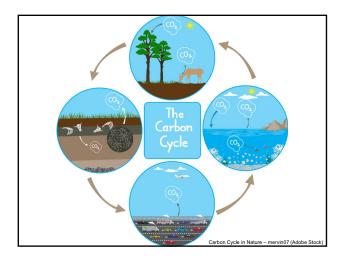
- Eat only meat
- Most secondary consumers are carnivores.
- Tertiary consumers eat secondary consumers.

Omnivores

- eat both plants and meat
- Many tertiary consumers are omnivores.


Scavengers


- eat bodies of dead organisms
- Scavengers exist at all trophic levels.



Images: Grizzly Bear – jdaypix (Pixabay); Raccoon – David Selbert (Pexels); Vulture – Harry Lette (Pexels); Crab – David Mark (Pixabay)

- Carbon is the fourth most abundant element in the universe and is essential for life on Earth.
- Carbon appears in many forms
 - Solid
 - limestone, wood, diamonds, coal, plant and animal tissue
 - Liquid
 - oil
 - Gas
 - carbon dioxide, methane (natural gas), propane
- The carbon cycle is a system that transfers carbon from one part of the environment to another.
- The carbon cycle consists of two cycles:
 - Biological Carbon Cycle
 - Biogeochemical Carbon Cycle

Biological Carbon Cycle

 The biological carbon cycle deals with rapid carbon exchange among living organisms.

Eagle - Capri23auto (Pixabay

Photosynthesis

- Occurs in autotrophs (plants)
- Uses carbon dioxide to produce oxygen and glucose (carbohydrates)
 - 6 $^{\circ}$ CO₂ +6 H₂O + energy \rightarrow 6O₂ + C₆H₁₂O₆

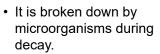
Trees – Stanley Zimny (CC BY-NC 2.0

Cellular Respiration

- · Occurs in all living cells
- Uses oxygen and glucose (carbohydrates) to produce carbon dioxide
 - $6O_2$ + $C_6H_{12}O_6 \rightarrow 6CO_2$ + $6H_2O$ + energy

lce plant – Mike Finn (<u>CC BY 2.0</u>) Animals – kathleen.bence (<u>CC BY-NC 2</u>

Consumption


 Consumers get the glucose necessary for cellular respiration by ingesting plants and/or animals.

Eel – NOAA Ocean Exploration & Research (CC BY-SA 2.0)

Decomposition

• Carbon enters the soil as dead plant matter.

Rotting wood with fungi – Jake Slagel (<u>CC BY-NC 2.0</u>)
White peach: Brown rot of fruit – Scot Nelson (public domain

 Over long periods of time the organic matter forms deposits of coal, gas and oil (fossil fuels).

Geochemical Carbon Cycle

 The geochemical carbon cycle deals with the long-term cycling of carbon through geologic processes.

Credit: ArtTower (Pixabay

Precipitation

- Carbonic acid forms when water (rain) reacts with the carbon dioxide in the atmosphere.
- The weakly acidic rain reacts with minerals on the earth's surface dissolving them.
- The dissolved minerals are carried by rivers and streams to the ocean where they precipitate out.

- Marine animal shells contain carbon (calcium carbonate).
- Shells settle to the ocean floor when the animals dies where they eventually form limestone.

Seashells – Skitterphoto (Pexels) Crab - Alexsandro Rosa de Mello (Pexels)

Burial

- Carbon bearing sediment is continually being deposited on the sea floor forming new rock.
- Seafloor spreading pushes the seafloor under the continents.
 - subduction

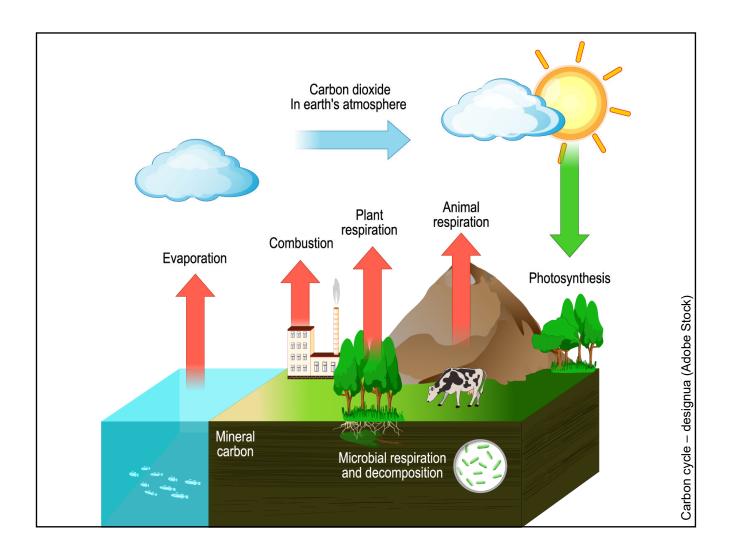
A Fish and the Floor – Meridith P. (CC BY-ND 2.0)

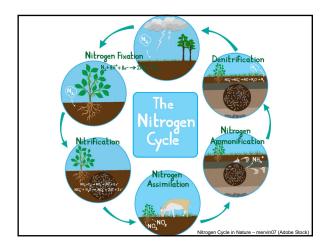
Volcanoes

 Volcanoes, hot springs, and tectonic uplift all release carbon dioxide back into the atmosphere.

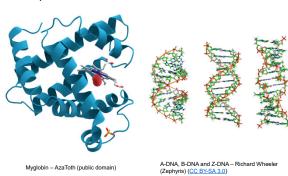
Diffusion

• Carbon dioxide is absorbed and released where the ocean's surface meets the air.


Vaves – Dimitris Vetsikas (Pixabay


Combustion

 The burning of fossil fuels and any organic material releases carbon dioxide into the atmosphere.



Forest fire in progress – gilitukha (Adobe Stock)

- All life requires nitrogen compounds.
 - proteins, nucleic acids

• The atmosphere is 80% nitrogen but neither plant nor animal can use this nitrogen directly.

Jaymantri (public domain) (Pexels)

- Autotrophs (plants) must have their nitrogen "fixed."
- Nitrogen fixation is a chemical process by which molecular nitrogen (N₂) in the air is converted into ammonia (NH₃) in soil or aquatic systems.
- Most nitrogen is fixed by bacteria, but it can also be fixed by lightning and artificially through industrial processes.

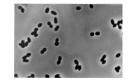
- Some bacteria live in symbiotic relationships with plants.
 - legumes (soybeans, alfalfa, beans, peas)

Rhyzobium – Ninjatacoshell (CC BY-SA 3.0)
Alfafla – Patrick J. Alexander, hosted by the USDA-NRCS PLANTS Database
Gray Alder – Joe F. Duth, hosted by the USDA-NRCS PLANTS Database / USDA NRCS.
1992. Western wetland flora: Field office guide to plant species. West Region, Sacramento

- Lightning converts nitrogen gas (N₂) and oxygen gas (O₂) present in the atmosphere into NO_x (nitrogen oxides).
- NO_x may react with water (rain) to make nitrous acid or nitric acid, which seeps into the soil, where it makes nitrates.

- nothink (Divohou)
- High pressure and temperature is used to combine nitrogen gas with hydrogen to form ammonia (NH₃).
- This is usually processed further to make ammonium nitrate (NH₄NO₃) which is used in commercial fertilizer.

Bags of fertilizer – Sharon Dowdy (UGA CAES/Extension) (CC BY-NC 2.0)

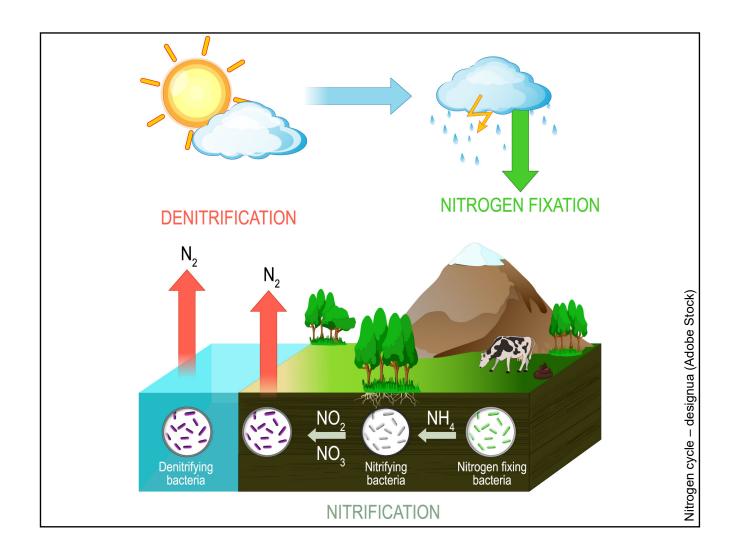

• Animals must eat plants or other animals to get nitrogen.

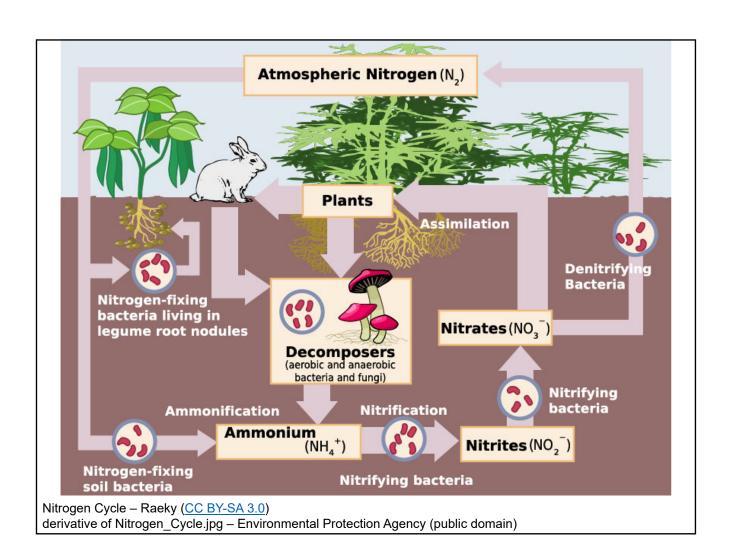
Credit: Vegetables – ready made; steak – Kasumi Loffler (Pexels)

Nitrification

- Ammonia can be used directly by some plants as a source of nitrogen
- Most of the ammonia is converted to nitrates by nitrifying bacteria in a process called **nitrification**.

Denitrification


- Denitrification converts nitrates to nitrogen gas, thus replenishing the atmosphere.
- Bacteria that use nitrogen instead of oxygen to live are responsible for the denitrification.



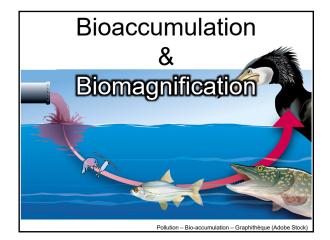
Bacillus – Y lambe (CC BY-SA 3.0)

Repeating the Cycle

- Nitrogen compounds that enter plants move through food chains and return to the soil and water through dead organisms and waste materials.
- Decomposers break down the molecules in excretions and dead organisms into ammonia.
- The nitrogen can then continue to be used without going back to the atmosphere.

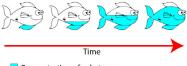
Effects of Excess Nitrogen

- Excess nitrogen in the soil can lead to
 - · Excess foliage growth
 - The plant may not produce flowers or fruit.
 - Burning and salt concentration
 - Leaves take on a burnt look from dehydration.



Tomato plants – Oregon State University

- · Stunted root growth
 - Roots may not grow properly
- Groundwater pollution
 - The excess nitrogen is carried to ground water, rivers, and lakes due to runoff.



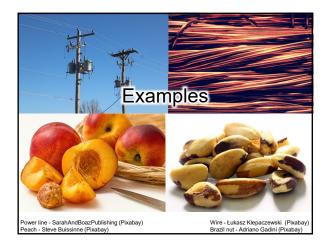
Agricultural runoff – Lydia Betts/USDA NRCS (CC BY 2.0)

Bioaccumulation

- Increase in concentration of a substance in an organism over time
 - the substance (good or bad) is stored in the organism and broken down slowly
 - · over time, the concentration increases



Concentration of substance


mage: David Libby

Biomagnification

• increase in concentration of a substance from one trophic level to the next

	1
 Biomagnification can only occur if the compound bioaccumulates. The compound must be fat soluble as opposed to water soluble. Compounds that are stay in the environment for a long time without breaking down (long-lived) have a greater chance of being ingested by organisms. Compounds that cannot be contained to one location can be spread through the environment (mobile) increase the change of ingestion. 	
 Just because a compound bioaccumulates and biomagnifies does not make it harmful. Compounds must be hazardous to the organism (biologically active) to be a problem in the environment. 	

DDT

(dichloro, diphenyl trichloroethane)

- Insecticide used extensively in the western world to eliminate the mosquito that carries the malaria parasite
- Banned from use in 1972 due to several false claims including
 - · Causes eggshell thinning
 - · Causes liver and breast cancer
- Still carries the myth that it is hazardous

100 Things You Should Know About DDT (https://junkscience.com/1999/07/100-things-you-should-know-about-ddt/)

PCBs (polychlorinated biphenyls)

 Used as coolant in transformers, sealing and caulking compounds, inks and paint additives.

Electrical Transformer – Bill Bradford (CC BY 2.0)

Overexposure can cause a severe form of acne (chloracne), swelling of the upper eyelids, discoloring of the nails and skin, numbness in the arms and/or legs, weakness, muscle spasms, chronic bronchitis, and problems related to the nervous system.	
PAH (polycyclic aromatic hydrocarbons) • Primarily found in natural sources such as bitumen (a sticky, black, highly viscous liquid or semi-solid form of petroleum - asphalt) Natural formed Bitumen collected at the Dead Sea shore – Daniel Tzvi (public domain)	
PAHs have been linked to skin, lung, bladder, liver, and stomach cancers in well-established animal model studies.	

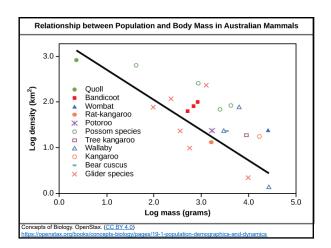
Heavy Metals

- A group of metals and metalloids that have relatively high density
 - Pb, As, Hg, Cd, Zn, Cu, Fe, Cr, Ni, Pd, Pt, ...
- · Natural and anthropogenic sources
- · Wide variety of commercial uses
 - Lead: storage batteries, ammunition, radiation shielding
 - Copper: wiring, water pipes
 - Iron: main component of steel
 - · Chromium: component of stainless steel
- Many are nutritionally essential for humans
 - Copper: red blood cell production, neuron signaling, immunity
 - Chromium: maintain normal blood sugar levels
 - Iron: helps make hemoglobin, making amino acids
 - · Magnesium: builds bones and teeth
 - Zinc: helps blood clot, bolsters immune system
- Overexposure can affect the nervous system

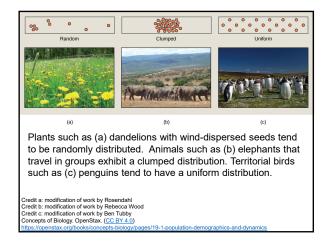
Cyanide

- Naturally found in small amounts in some foods
 - almonds, soy, spinach, apple seeds, cherry pits
- Naturally found in dangerous amounts in peach and apricot pits
- · Uses include
 - making paper, textiles, plastics, electroplating, metal cleaning, removing gold from its ore, exterminating pests and vermin

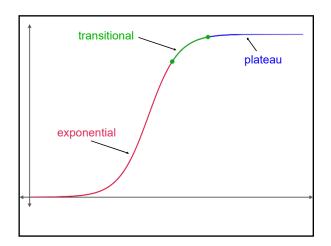
	_
_	_

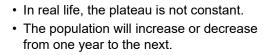

Survivors of serious cyanide poisoning may develop heart, brain and nerve damage	
Selenium	
 Trace element naturally present in many foods Brazil nuts, yellowfin tuna, halibut, shrimp, ham, turkey, chicken, beef, eggs, spinach Nutritionally essential for humans plays critical roles in reproduction, thyroid hormone metabolism, DNA synthesis, and protection from oxidative damage and infection 	
Too much selenium can result in hair and nail loss, nausea, diarrhea, skin rashes, mottled teeth, fatigue, irritability, and nervous system abnormalities.	

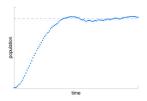
Population


- Populations are characterized by their population size (total number of individuals) and their population density (number of individuals per unit area).
 - A population may have a large number of individuals that are distributed densely, or sparsely.
 - There are also populations with small numbers of individuals that may be dense or very sparsely distributed in a local area.
- Population size can affect potential for adaptation because it affects the amount of genetic variation present in the population.
- The size of a population will increase due to births and immigration.
- The size of a population will decrease due to deaths and emigration.

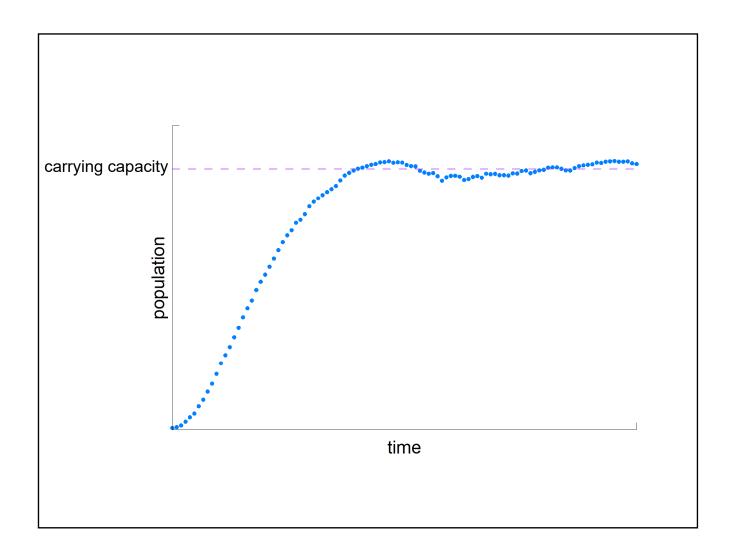
- Density can have effects on interactions within a population such as competition for food and the ability of individuals to find a mate.
 - Individuals in a low-density population are thinly dispersed; hence, they may have more difficulty finding a mate compared to individuals in a higher-density population.
 - High-density populations often result in increased competition for food.
 - Smaller organisms tend to be more densely distributed than larger organisms.


Species Distribution


- A species distribution pattern is the distribution of individuals within a habitat at a particular point in time.
- Individuals within a population can be distributed at random, in groups, or equally spaced apart (more or less).


Population Growth

- Population growth goes through three phases:
 - Exponential
 - Quick growing (very few limiting factors)
 - Transitional
 - Slowing of growth rate as the population approaches the carrying capacity
 - Population plateau
 - The population remains stable (small variations over time)



• The average value over several years is the carrying capacity.

-	

Carrying Capacity

- The number of individuals of a species capable of surviving in an environment over long periods of time.
 - This number depends on numerous limiting factors in the ecosystem.

Limiting Factor

- Something which restricts population growth in some way.
 - The amount of space available for building nests would limit the number of birds who would live in an ecosystem; therefore, space can be a limiting factor.
- These factors can be biotic or abiotic.
- Some of the factors depend on the total size of the population density.

Density Dependent Factors

- The effect on a population is determined by the total size of the population.
 - Predation
 - The more predators there are, the more prey are eaten.
 - Disease
 - An illness will spread faster through a larger, denser population impacting more individuals.

•		
•		
•		
•		
•		
,		
•		

 Resource availability 	
 The more organisms there are, the less resources (food, water, shelter) there are to go around. 	
Aggression	
 Too many dominant males (or females) can result in fights to the death. 	
Stress	
 Overpopulation can lead to stress in females causing neglect of younger 	
organisms.	
Commetition	
CompetitionOrganisms will compete for the limited	
resources available.	
 When populations of the same species compete, it is called intraspecific 	
competition.When populations of different species	
compete, it is called interspecific	
competition.	
	1
Density Independent Factors	
Limit the size of a population, but the	
effect is not dependent on the size of the	
population.	
Natural disastersFire	
• Earthquakes	
Volcanic eruptions	

Drought Flood Cold winter

Biotic and Abiotic Factors

- Limiting factors can also be split into biotic and abiotic factors.
 - Biotic factors involve interactions between organisms such as predation, competition, parasitism and herbivory
 - Abiotic factors are interactions with the environment and include temperature, water availability, oxygen, light, food and nutrients.